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THEORY OF RADIATION GENERATED BY CHARGED
PARTICLES PASSING THROUGH CONTINIOUS PERIODIC MEDIUM

G.M, Garibian
and Yang Chi

I. Introduction

The dynamlic phenemena arising during the diffraction of /3%
free x-rays in monocrystals (see, for example, [1] are
" well known. Similar phenomena may occur also for x-ray transition
radiation, formed when ultrarelativlistic charged particles pass -
through a crystal [2].. Physically, these phenomena are caused
by the dynamic interactlon of Bragg reflected and forward waves,
and in principle they must occur each time that a wave 1s pro-
pagated in a sufficiently ildeal periodic medium, with periods which
are comparable with the wavelength. In particular, dynamic
phenomena may occur in the long-wave regions of electromagnetic
waves — for example, in the sub-millimeter or infrared region.
It is characteristic that in each case the medium has an average
dielectric constant which differs from unity, or 1s basically

greater than unity.

On the other hand, a study of a charged particle in a medium
with continuous and perlodically changing density was studied in
[3-6]. In contrast to the similar problem in a system of plates-
which are regularly spaced with density which changes abruptly,
when the solution of the problem may be obtained exactly (see,
for example [7-9]), in the case of a continuous perlodic medium
a precise solution cannot be obtained. 4

S,

¥Numbers in the margin indicate pagination in the orlginal foreign
text,
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This is due to the fact that in the latter case the problem
s physically more general, and therefore the nonhomogeneous Hill
' equation arises of arbitrary form, whose explicit solution may

" be approximately given only when the medium density changes ‘
slightly. Thus, usually [3-6] the solution of the Hill equation
1s used as the zero aﬁproximation of the perturbation theory :
which corresponds to a forward wave in a medlum, with allowance
for the average value of the dielectric constant, whereas all
 the remaining waves are assumed to be small. '

However, when the conditions of Bragg reflection are satis-
fied, a reflected wave will be of the same order, generally
speaking, as a forward wave, Therefore, in this case the pertur-
bation theory must be changed, so that both of these waves are
considered in the zero approximation. ;
1

i

The present article examines the problem of charge emission.
" in a continuous periocdic medium by means of this changed pertur-

bation theory. In thevlimiting cases, when emisslion frequency

is far from a Bragg frequency, the formulas obtalned change into

the corresponding formulas of the regular perturbation theory.

In addition, close to the Bragg frequencies the formulas obtalned
;'differ greatly from the well known formulas. '

In particular, as a result of the dynamic interaction of a

. Bragg reflected and forward wave of coherently increased transi-
tional emission formed by rigorously periodic inhomogeneities,

close to the Bragg frequency very intense radiation arises. This
radiation is almost monochromatic and is propagated both forwardg

in the direction of the charge motion, and backwards at a very f‘;éi
small angle to the charge trajectory. The strength of this y
radiation at the spectral maxima not only greatly exceeds the
strength of the transitional radiation in a periodic medium far

from Bragg frequenéies, which is produced in ordinary perturbation
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theory [3-6], but also may be greater than the strength of
' Cherenkov radiationlat the same frequencies (1f the latter occurs).

In addition, this article also examines the case when a
periodic medium has a finite length. Then, 1n addition to the
radiation which is formed within the periocdic medium, which
emerges from it and is refracted, transitional radiation arises
which 1s produced at the boundaries of the periodic medium and
a. vacuum.

The article [10] made the first experimental study of
radiation of relativistic electron clusters in a wavegulde with
regularly spaced plate@ with a density which changes abruptly.

II. General equations for an infinite periodic medium

Let us assume that a rapid charged particle with a charge
¢ moves uniformly along the z axls at the speed v in a medium
whose dielectric constant 1s a periodic function of z with the
period &
Exe2E(1vqee) (1

where Qrez)= 4@ and f?&w@ a , 7i.e., €9 18 the average dlelectric
constant of the medium.

If we represent the vectors of the elecﬁromagnetic”fields

in the form of Fourier integrals | B i
ﬁc:,t)iiﬁce,u) epliot)do
Feo=Tq | (2)
te,t)zj H (2,00 exp (-iwt) dwo .
then we obtaln the following from the Maxwell equation [5] fh
T4 Y A s de T
,g ) [c“"‘ tawdae” (s. 4,)]‘((.:)_ P2

£ iwv g0 dg . '
__*‘-'( --('— *'T‘?Ii),fff_(‘_?‘)fi,w o




The function ¥(z) is connected with the Fourier components of
the electromagnetic fleld vectors as follows

'D,cf,w;z S(ios)"" Yy J, (xp) =de _
De(t U)aT[-_. e,gr(i'—i) (E,} ‘E'E')j: de]J(:p)du

by E={ [ G et it Yol depdx,
‘where Jo(x) and J,(x) are Bessel functions of zerc and first

OR

orders, %, p are the transverse components of the wave vector

‘ i and the radius vector T, respectively. We shall perform cal-
culations for w>0, keeping the fact in mind that for w<0 the

- expressions for the field are obtalned as complex conjugates.

Let us expand the function ¢¢) in Fourler series

‘f(i)=Z——a eur(zm'r—) , a’_a ‘.a a‘. (5)‘

T
We shall assume that the series (5) may be differentiated twice

term by term. It 1s convenlent to distinguish between two cases:

(A) when the number of the Fourier amplitudes is infinite, they . /7
. decrease monotgnically with an increase in the number |n| more

slowly than n ~; (B) when the number of the Fourler amplitudes

8y 1is finite, and ‘thelr value is arbitrary. In the case of a

periodic medlum consisting of plates, the corresponding Fourler

series does not satisfy all conditions of case (A) namely,

the Fourier amplitudes decrease as I/n. Nevertheless, as will

be shown below, in case (A) the basic properties of the phenomenop

ocecurring in a stack of plates [11] are qualitatively retained. j

Substituting (1) and (5) in Equation (3), and introducing *

the dimensionless variable 3=v3/2. , we obtain |

: i

| 4
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where Y= Y(io}/;";>~ and
| Fcb)’z 9 Mf(hn})

L L3

RO Seivon U9 Muolaing)
The Fourier coefficients 9,, and M. are unequivocally
determined when Equation (6) is derived. This equation is a non-
homogeneous Hill equation. Followlng the general theory given
in [12], we may formally write 1its solution. However, to obtailn
the explicit form of the solution, we shall assume [12] that
the deviations of the medium from a homogeneous medium are small,
l.e., Bi«t . Then, within an accuracy of terms of a higher

order of smallness, we have : _
SCACND -
- l u:.a.) ' l 3 & -
B {9‘. 1( s -Zn)a ('ﬂ#.o).;

(7)

;M.ﬂi 1-pt !
M”=-1[ (i+P &)+ zwvn]a“ (n*o)

If the linearly independent solutions ") and §a) of the
homogeneous Hill equation (6) are known, then the solution of the

non—homogen_eous equation may be written in the ‘rwo':rm‘
. . . . o ) ) . y ) | _ ‘ -
Y uwla-Vol-nolAacnel (9

where

- N

V‘,ttw S Yo éu) Fuwids ; |
)

1y

(10)
W- Hlﬂ* 3-3,. s



In order to determine the constants Al’ A2 we shall use the'
condition that the solution of Equation (6) i1s periocdic. (See
7. -

wi,

Y(a r2)= Y “‘,(‘ wh

' We thus obtain
Ve esli(fv- 59)]

;én,;l-* Lo oq[iCfer-20]
where Lfnﬁn; and ‘vﬁﬁr) are constants which, according to
the Floquet theorem, occur before the solutions of the homo-
_geneous Hill equation {jgy' and &Q} when the arguments shift
by the period W, ‘

(11)

III. Solution of the homogeneous equation

According to the general solution of the homogeneous Hill
equation, we assume

J90= e (1)) Con orp (riny) a2

,Substituting‘(l2) in the homogeneous equation whieh corresponds

to Equation (6), we obtain the recurrence relationships

[9 (r*z")]cn Z eamcztn-m)"'o (13)

ma.go

where the prime over the‘sum‘sign means that a term with m = o
must be omitted during the summation. These relationships give
“an infinite system of equatlions for determining the quantitiles
CZn’ which are still unknown and which are Fouriler coefficients
of the solution (12) of the homogeneous Hill equation.

The coefficlents 6,.cmpo) contain a small parameter q, and

,l the seriles ';q; must be converging due to the assumptlon
" that the series (5) can be differentiated twice. It may be seen

from Equation (13) that small coefficients 4. occur before
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all Jdo,;; whereas the coeffielent 4. -(r+2:* occurs before C2n'
If the latter quantity is not small for a single value of the whole
number, n, then the system of Equatilon (13) has only a trivial
solution. This system of equations may have a non-trivial solution
only when &-quaggb- for a certain whole number n. Since fff-
ia determined within an accuracy of an arbitrary odd number,

without disturbing the generality, we may assume n = o in the':

last condition. Thus, the system of Equations (13) may have a
non-trivial solution if =13, :

If the quantity o, 1s not close to a whole number, then the
quantities g.- (r+1nf“ cannot be small for an arbltrary whole
number n»#0 . Then it follows Equation (13) that in this case / 10
all the coefficients ;g_€¢ﬁa) are much less than Co,- Physically,
this corresponds to the situation when the condition of Bragg
reflection is not satisfied, and only one forward wave (6] is the
main [wave ) a

Let us now assume the guantity 'ﬁg is close to the whole
humber h >0, In the mathematical literature, thils case has not
been -analyzed. (See [12]; the necessity of a speclal examina-
tion in this case was alsc indicated in (5]). Then among G (noo)
one coefficient, namely ..l will be of the same order as Co» .
and the others remain small. Actually, relationship (13)

assumes the following form In the casev[ ==l

i[e." ([-2{)’] C-al-r gt . + .ls‘ C’o = O

Since (g arx4 » then g-(r-22)® , and 1t thus follows that

C-spy and co'may be of the same order. Physlcally, this means

‘ that Bragg reflection occurg, and the reflected wave‘c—zh
plays an importan? role along w;th tpe forward wave Co.



Keeping these statements in mind, we must retain the following

two egquations from System 13 as the zero approximation:

:(9""(:)00 + 0 Cu=0

9‘*‘0‘,"[9"_'(["2{)}]6'.24.—40_ (14)

In order that Equation [(14) have a non-trivial solution, it

is necessary to require that the determinant of the gystem equal , -

zero, l.e., 7
[8-1](0, ~(p-2R)]- 0,000 = 0 -~ as)

The relationship obtalned 1s an approximate characteristic
equation for determining [ , when the quantity s .
¢lose to the whole number h, which does not equal zero.

To solve Equation (15) we assume
lo,=*+a , r"+-&~-;é (16)

where flaf« & . |§l€4l]" [Then for § we obtained the two
values | '

(17)

We thus have

YR (18)

- Substituting f;.=£+8. 1in (12) instead of [, and taking
into account (18), we obtain two linearly independent solutions
of the zero approximation of the homOgeneous Hill equation.

QLN

L | A4S, a9
L - 2 P -Q
T e __f'_';‘_'_f?L
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Only two of the main terms Cj and C_,, were taken as the

- zero approximation from the entire sum (12). To obtain the sub-

sequent approximation, 1t is necessary to take into account the

contribution of the remaining terms Cznto the solution., They may

be determined by means of (13) in which it is sufficlent to

be?&ﬁf%hdtwo main components, m = n and n + h which correspond.
C and ¢ _2h 'fn the summation ovVer m. _As. a.result, we obtain

G (5) Jf,& (}) +{, e‘f[' (‘*‘5:)}]

* 6, O "‘(3“5:!."3)94:»4) (izn}) (20)
' ' Amem 49&( ﬂ(‘ +'ﬂ) v
where the double primes over the summation sign indicate /12

that we must omit terms with n = 6 and -h. during the summation.

It may be readily seen that far from the Bragg frequencles
when [la| » jo,) &nd [e,| , Formula 20. changes into the expression
(3)3 (‘oexl;ur:}){ i +Z 4n(r*: 5 _p (2:"15)]
(21)

‘9 !
ax. (}) C @:p(—zf,g){i-iz 4n(l‘ o e.:F( 21-15)}

These formulas give the solution of the homogeneous equation for -
“the problem being investigated, obtained as the first approxi-
mation of ordinary perturbation theory.

IV. Solution of the non-homogeneous:equation

Having the solution of the homogeneous equation, using
Formulas (9) - (11) we may write the solution of the non-homo=-
geneous equation, Utilizing formula (20) after the appropriate
computations we have

Y—Ym-hﬂ’ ) . ) ' (22)-

. i



where Y™ is obtained by means of the formula of the zero

. approximation (19) and .
- IY”..__-_G_T { eleun L) T AL G A d)Mg._
4R 8T (G- A0 - 3: (6a-A* -850~ #R8}
9. Mu--l )
—ataenly £ -
" +(€.*£)l i } erf(l }}_ o T o
Here ;"n- 7,3:*‘2“ . The quantity AY  occurs when taking into

account correctlons of the first approximation given in Formula
20, and has the form

a f‘.‘e {a -0, LM,,,_n*(Z‘(gm-A)*ﬁ)M‘q
- AY= $Linwe, ’{‘Z:.[ : ('5"_4);_ 3':'

.

|

0. M l(-n..ljf(lg.(g f‘)"ﬁ-)’dg- (1"_ - 1 ’ )

* (8.vA)* - Ju‘a ¥ R L .

-ZZ’ - o+ (o1 bm)e.,..‘,M (e

2nkem (fnem -B)- 83 ‘

emvl.! e-zl'. +(‘3K (gnm “}‘ R) 6:- Mo *
(bnom +A)*- 8} T

] ,+l"9,,| e,‘_‘?‘(lg(g A)"‘a)ga(lu-‘)
o (b A
%.m.u(zu& -£)+a)6.. (i foom

TRt e ]“" 5’}

Let us first examine the limiting case of a homogeneous /13

medium when q = o, Then according to (8) the quantities‘ '29_;.;
and 3’!\*_1,,,,_5 equal zero in the case naeo . As a result we obtain

(23)

+-

Y- . e li® e "
\Y- q;tfrg' f( )w‘/ﬂ“‘ w s‘/c "xn. '3 (25)

‘Let us substitute this expression in (4) and let us integrate

" over |[x; , using the following formulas (see, for example, [13]).

xdJ, (epyda . S .
=Kty (26)

N

Jileprde 4 K.r-im.
wl_zl elP a‘e

4

where KMC‘):I the modified Hankel function of zero and first orders,

and ‘I-_-z_:ro} '~ As a result of integration, we obtain| .for example ™
| 14
we - g up L

\D(i’u) ﬂfC‘ )(f 2, l)](( Jp‘z, ) e
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For a large absolute value of the argument, we have ﬁﬂuCu={§Z;.
sexpl-x) .- When * P4 >i | the field of the charge like the

- funetion P. does not decrease exponentlally, at large distances
(in a transparent medium), which, as is known, corresponds to the
formation of Cherenkov radiation.

When calculating integrals (4) using expressions (22) -
(24), we must expand the latter into the simplest fractions of
the type (25) with denominators containing #* . The variable

#* 1s only included by means of the quantities a  and &,
in expressions (23) and (24). The quantity i§* in its turn is
- expressed by means of a according to formula (17) whereas from
(8) and (16) we have

e _‘_t% ‘," :;,: (28)
Taklng these considerations into aocount we may see that
expressions (23) and (24) may be expanded into the simplest
fractions with denominators of four types, laéd,CAL and ‘a*d An)
where

A= [Gh taa )+ O B, | (29)

where n 1is a corresponding whole number. For }fﬂ} we have

LA T

M 1 A-t.‘e-d-z»:_ L gt gt (30)
+ £a urt-) Q rof.ix) Q-a.(r
(&‘..muh xt&ﬁddn
ddf'ﬂ Qoofeln) R=dsiln)

j 4 5: ..!M 'n ( l - ! )
Y !wwz Z{ p :'r)n a+auu) a- a'tn))+1|
|
I
E

[ ——

e.g‘Ms!qau i ,
A ) -u\m) "’"( }J

11



Far from the Bragg frequencies, when lal=»[9 and 8. /13
the solution Y derived above of the non-homogeneous equation
changes, as it must, into the corresponding solution obtalned by .
means of ordinary perturbation theory [3].

However, 1t must be emphasized that all of the formulas ob-
tained are applicable under the conditlons |ai« gt and 3¢k -
If these conditions are not satisfied, instead of formulas
S (17) and (18), we shall have & = i{zﬁ’wa (4R +4R'a+6 0,
and Core = C (82248 _a) /O . The apprc)priate changes must
be made in the subsequent formulas. '

V. Radiation produced within an infinite continuous
perliodic medium.

Let us flrst establish the main contribution made to the
quantity Dytf,w) - For this purpose, in formula (8), instead of
Y , we must substitute expression (30) and disregard the

- term containing de/dr. . We thus note that the expresslons

. {23) and consequently (30) and (24) were obtained under the
condition ‘

*-"f- g, ‘ | (31)

Condition (31) may be distur_bed whe.n'intz@s?ét;aéque}:‘==‘-
~in (4). 1In order to find under what conditlons Equation (31)
1g not disturbed when integrating over 3 , we must flnd what
values of % make the main contribution to the integrals (U4),
Since the Bessel functions "J'.,'. (xp) fluctuate and decrease for
large values of the argument, the values of! x.: », , make the main
contribution to the integrals (4) where at. f. . If it is re-
quired that #,&wlG/c , We may then use formula (23) when
calculating the integrals (4), if *;p_?_c/_g-ﬁ;.g . 1t majf be /16

12



| readily seeri that this condition may be readily satisfiled. E
Then conditlion (31) may be written in form '

1 PR (32)
which coincides with the Braggcondition in a medium with an
average dielectricconstant e at an angle of incidence w4 .
Replacing conditiont31) by (32) means that we are confining

- ourselves to examining radlation enﬂgnating at small angles
" to be trajectory of the charge.

Keeping these statements in mind, after integratlion 6Ver =

using formulas (26) we obtain the f‘ollowing expression e

e epGID)
D (€ UJ zg we (’*P) Z up(!‘.v
4 Bee Mun-l) + (A% Rt (")J'ZM” .
{ Koy - (n) A zf"f? !
- £ 9.{ Mzr--l.-; "’("'— 5:1'1'. (“))AM” 3
Z“ ol (»)

- H

fﬂff ”MPJ"'

€. 9-::, Maenits = (£%- £ -d.(-m{M...

Z., oo () M‘D (12 r)-

84 a-]‘ Mgt~¢‘l (4; ‘n +d fﬂ))‘Mu
2 F MY Mf ( % P)}

where : - ' S

Tt bt et gt
‘l %pin =%fo-"‘ ‘—i{- *"‘id.(n)

]
|
|
!

x‘ - St gt | (34)
i L B f. 'T‘ ¥ 3‘ d (n) - :

Making similar computations byrhmeans of formulas (4), (30)
~and (26) we obtain

Dm(?u) “J’(' ) we (v \"tZurﬁg.?_-ﬁ)

vt

. { . a.m.,, b+ (A% 62 - d M,

xV& a_(n) “f(“"'lr)

|
] (@35
uff:d,f)f i |

- ; B‘LMg(--‘) + f‘g 60 4“-(")‘ Ml-ﬂ
. 2% o ()

13
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ﬁ . + ‘n ;‘ “ao £) ('A' Gn -dOfP")‘MM “r f‘x-.r)- :
! B o, (n) .
1

- ‘a e.‘l, Mu-ol)" (“ 6- 4“0("»‘5‘1; e’f (' f)} ( 35 Cont ! d)

a“a.n)m

The quantity Plﬁnv may be expressed by the formula obtalned

from (33) if we 1ntroduce the factor' Lw/%c&. under the summation

“s8ign.

When Cherenkov radiation may ‘occur in a medium, i.e. when
~ P'&>! and Wé are not close to the threshold, to fhe
radiation described by formula (33), we must add the regular
Cherenkov radiation in a medium with an average dlelectric con-
stant, which is determined by the formula (25) in the zero

approximation. This 1s connected with the fact that the trans- _

verse component of the wave vector of the Cherenkov radiation -

wGFZTT/v far fréﬁ the threshold is not small, and therefore
ordinary Cherenkov radlation is not encompassed by formula (33)
cbtained when the condition (32) is satisfied. It may be seen

from formula (33) that only those components for which the values

of (34) are positive make a contribution to the fleld at large

distances f. 1In addition, it_may be seen from (33) that

these components willl be larger, the smaller are the values of
(34). Since we are considering the case when the Bragg
condition (32) is satisfied, the values of (34) will be small

only if g, mek” . It may be seen from the expressions for
[dm  and éé..;: that thls may be done 1if ‘g\m./v;nuﬂl:d':k;i

Keeping this‘in mind,; we require that

"n'-_ﬂod. nir .. . ‘ | (35)

14



where |di« &’ and.&', 1s a positive whole number of the same
parity as h. Substituting (36) in (29) and assuming that
‘nan,+n, , when 'n, satlsfles the conditions

fz‘.""ol==.:‘|.=’s-“f\." ‘ . (37)
fior :ditw) we obtain,
olatn)= J4h¥(dean)t 46,0, | (38)

The order of magnitude of the quantity under the root sign
in formula (38) is determined by the first term. Let us compare
the quantities dou(n,) , delntd)s dytns) - If K is a small number,
then the two quéntitiés ;J%g— may always be less than the re- ‘
maining quantitles. II‘IJ_:'-,«--&Qf then these quantities are small and
of the same order when imj%{f .

It follows from conditions (36) and (32) — which lead to
amplification of the radiation when they are satisfied — that .
the difference between the charge flight time and the:-average

‘propagation time of the radiation during fhe nonhomogeneous
period of the medium must equal the whole muitiple of the
radlation oécillation perlod.

We should note that 1f the quantity \4|»£§§§h,3 in condition
(36), 1t follows from formula (38) that dmmzilden] and formula’
(33) changes into the corresponding formuiardbtaihed in ordinar& ‘
pertubation theory.

Thus, if h' (and consequently h) 1s a small number, [i8
l1.e., 1f the wavelength of the radlation is comparable with the
medium non-homogeneous perlod, the component with n = n,. makes .
the basic contribution to formula (33). Afa result, we obtain,

for example

15



. oo [i(2 4“;:!,_ . J: R
D (2 )_ &f[ (T ?u)w] we L‘P"ﬂ') -

i

L 2d e !
r (2 hd 4ol )My g + 0 Mg B '-l;
l .i[ z“": err( &PH o o
{" (Md )Moz = Gz Moa-t? ( 2.0)] ex s{we :
e P SIEL ep tinp)] r( .
‘- . i | css) i
3{. - { 8.1 M-t (;ii XM &2t ur [ﬂqp)- : “;}

‘ % - e.u,Mg.; +izv£‘+d)Mol - . ({np)]ur( L—-—g)}

S N SO rTe

" where

o= (AR O 6y
l L 40)

Dt _ Wt N *
Eea= e ’“‘,: ;" o

We should note that in the particular case of ultra- -

relativistic particles, 1i.e. {-p*«{ , and in the region of fre-

quencles where ?g,-1=g,'<o a1iglel the expression obtained

(39) must coincide with the expression B (7, u) _for the case of
Bragg refraction which 1s almost precisely forward this express-
~lon was obtalned in [2]. Actually, if we integrate over the

wave veetor ¥ using formulas (29) from [2], we obtain an
expression which coincides with (39), given in this particular

case.

Let us now find the strength of radlation arising per unit
length of the {rajectory of motion of a charged particle. Feor
this purpose, let us calculate the flow of the Poynting vector
passing through a cirjcular region I‘o‘spﬂ if’“_ in-a plang perpendi-
cular to the g axis. (see Figure 1).

| i - CTT
}N*—fdffzwpdf E(u t)H (; t) ‘ (41)

i
Rl TR N
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Thus =29 , Pi=(2-d0)ty8 , Where ‘9= Mtq(‘:&x_/u{;j) is the: angle:

of radiation. The quantities E,(¥,¢) and Hy&8 may be
readlly cbtained from (30) and (2). When calculating the inte-
gral (41), interference terms occur which contaln factors of the
type wifm-i,)f or ufzi!.re/a'.} , which must be omitted.

As a E'esult, we obtained the following for radiation
-emanating in the forward direction

dw et [ P ;I-(z£d+¢)M£lg-+9,¢M,‘
Iz &,

b
o | 1 - R"'t (42)
: lf.?.ﬂd - M “e_,g,M-g ;l '
T R x,,}du

and the following for radiation emanating backwards :

[B.eMe.g + (284~ f)M-‘_.,l
év’fldl‘ { ' P"a‘

} . l’

(43)

Ie-zg_Ml % +(3H+¢)M.a-r du
! : : l*si“ Re*}

It may be seen from formulas (42) and (43) that the radia-
tion strength 1s determined by the Fourier amplitudes '_q&, dm_,g,i_
and 'f-m.r) » Independently of the presence or absence of other '
amplitudes.

Since we are considering the small numbers h and h',
‘cases A and B, which were glven in Section 2, do not differ 1n
essence from each other. We must emphasize that the formulas
are only valid in the vicinity of Bragg frequenciles |w, « Awe’
E/z.ﬁ;. and when wjo . o

Let us now analyze the expressions obtalned for an arbi-

" trary value of e, separately for the cases of when .Pt‘* differs
significantly from unity (far from the Cherenkov radiation thresh-

old)} and when "P*g,sti (close to the threshold). This division

17
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1s due to the fact that 1n the flrst case, as was noted above,
Cherenkov radiation 1s not encompassed by formula (39), whereas
in the second case. the Cherenkov radiation which 1s produced
is propagated at & small angle and 1t automatically is taken
into account by formula (39).

Let us introduce a small deviation of the frequency 'i 55'60_-‘9.3

Yo, . [Then  d=R'(4+3), . where

Ha b (k)
4o xpn‘_.i |

and in addition we have the following from (40)

-z;_‘:“‘{a—é\]z’-u +9)"+§%Fs. } (45)

Let us first examine the first case when PeFl . It
may be seen from (32) and (36) that in this case A% , and
R>& . corresponds to p‘fni‘ s and hek corresponds to: p‘£.< l-‘
With allowance for the absorbing capaclty of the medium, 1 e.
if we assume [that ¢-¢ +ie” (le.w\m) - from-Equation (40) for
ey we find that

\wﬁg':e;; T le: 9+d+J{2{‘9$:} +£‘(£./€. )" ‘ (46}
1 o 1RE |
I, W28

The denominators 'jx® in Formulas (42) and (43), have the form

Hr’[(z&"hJ wd*+94,9_,;)‘ O ‘]"’ 2.
It may thus be seen that the radiation strength (‘42) and (113)
reaches a maximum when :

| 2(‘9?{4&'4‘1-9,‘6_4::0 5

.18
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Expressing d by and ¢, , we find that the maximum
occurs when |

d-{ tl“& "de "'(‘-‘ ‘-u)ed e-l‘ /{‘“ ;
I

At the maximum of thé'radiation strength (H2) and (43) are 1n—
versely proportional to g%./h .

| 92 ')c

Let us determine the ratio of the strength of radiation
emanating forward at the maximum to the strength of Cherenkov
radiation at the same frequency (if the latter occurs). This
ratio has the order of magnitude T s

1 am. mr( '1) 2] m,s 2, /fbr" (s." !)c tys

(We assume that 1Q4QfLﬂfJauLZ) ). For a sufficientl& small
absorption, i.e. if the quantity g’ 1s sufficiently small,
this ratio may be on the order of unity and greater. '

We may establish the spectﬂéf;ﬁdggof the maximum as that

deviation a?=9-9,, at which Rew; ~ TImsy .. It may readily be .

seen that A)~£}u/?#-£9h‘ . The radiation angle has the
order &lg/g sy 1.e. 1t is very small for a weak[ﬁ absorbing
media. '

For sufficlent large values of :l':a_l:-_:-&g‘ and é‘,_e_‘,;/g_‘ '
the quantity {x;* will increase in proportion to';Hfi and
therefore the'strength of the radlation described by formulas
(42) and (43) will be small.

A similar situation occurs close to the Cherenkov thresh-
old when p'el , 1.,e. h = h'. The difference lles in the fact
that in this case, close to each Bragg frequency 'w,! , there 1is
in all one maximum when I
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The width of the maximum has the order & /% ., Far from the
Bragg frequency, the radlation emitted in a forward direction,
Just as in the case A#4&’, rapidly decreases. With respect to

the radiation whigch is emitted in the backward direction,

above the threshold it changes into ordinary Cherenkov radiation,
and below the threshold 1t becomes weak.

Thus, analyzing formulas (42) and (43), we find that when a
charged particle passes through a perilodie, slightly absorbing
medlum, the most interesting occurrence 1s that close to the
Bragg frequency, very lntense and almost monochromatic radlation
arises, which is propagated both forward and backward with respect
to the direction of the lcharge motion. Apart from this radia-
tion, there 1s also Cherenkov radiation (if (>t ) and the
regular weak transitional radiation far from the Bragg frequencies,
which 1s produced by the inhomogenelties of the medium and is
described by formulas obtained In the regular pertubation theory
[3-6], which may also be obtalned from formula (33) in this
study. The nature of the intense and almost monocchromatic
radiation close to the Bragg frequencles is a result of dynamic
interaction between Bragg reflected and forward|waves, of coherently
intensified transitional radiation produced by the rigorously
periodic inhomogenelties of the medium. Since the Iinhomogeneities
of the medium are continuously distributed over the entlre tra-
jectory of motion of the charge, the strength of the transitional
radiation 1s proportlonal to the length of the trajectory, both _[gi
close to and far from the Bragg frequencies.

By way of 1llustration, Figures 2 and 3 show curves of the
spectral dependence of the number of quanta {¥ /47 , emitted from -
a trajectory one radiation wavelength long. Thus, Figure 2_

pertains to radlation emitted in the forward direction and
Figure 3 pertains to radiation emitted in the backward direction.
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These curves were calculated lusing formulas (42) and:

(43), in which 1t is assumed that only the Fourier amplitudes

. Gy and 2x differ from zero when f.safe 3 . In addi-
tion, & 2,78, &/& = 3-10'4.(1—p‘)/2. 1-3074,. § = 0.15 . The numbers
l, 2 and 3 mean that All and Alo respectively equal 0.25 and 0.25;
0.45 and 0.05; 0.4995 and 0.0005. The dashed horizontal line

" in Figure 2 pertains to Cherenkov radiation. |

Let us now assume that h and h' are much greater than unity,
i.e, the radlation wavelength 1s much less than the medium inhomo-

genelty perlod.

Let us first consider case A which was pointed out in
section 2. In addition to the terms (39) in formula (33), a
1arg'e contribution was also made by [terms withi n = n,en, , ‘
where n=21,%,...., and [nl«k . Let us write the explicit
form of these terms for the particular case of ultrarelativistic'
particles (t-p*«i) and in that frequency region where ;z.-;i-

}2.iéi . In this case, as may be seen from conditions (32)
and (36) f='* . Due to the fact that A»{, in formula (38), we
may disregard the term 6,.6;, , as compare'd with the term

44*ds2nf , excluding certain values of ‘3|, for which
d+zn =0}, _Since d= R(1-p+>-' ‘g.4) s We have '

w2 fyrlp- ko) a7y

where n «n,en, , and the signs * correspond to 1 = 1.3 and
1= 2,4, |

We readily sée from the expression for ¢, , that
o = hedezn,” for the first two térms of formula (33) and

"-_-_"}_ﬂ*ﬂ_*ﬂ-' for the last two terms. This means that the
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first two terms correspond to waves which are propagated for-
ward in the direction of motion of the charge, and tl}e last two
terms — in the opposite direction.

Keeping the fact in mind that when £Aa=»n, the quantity
M.itezn, » 1s much less than My, , we find from formula (33
that part of the wave Dt:‘u) , whiech is propagated in the forward

direction, has the( é‘)or-m a
ex we T2
) o v, (zp ) Zr “‘T[U“d"""ﬂ ]

1
L
t

(48)

A M
.‘ 1 2;34. ur(*t&"nif) PR
where § = 1 or 2 depending on whether the quantity d-rzn‘ . 1s

positive or negativel, and summation is performed [over the whole
numbers N , such that *.; . It may be readlly seen from
formula (47) that independently of the sign of d + 2n,; we have

s R ‘%"J-) (49)
If we introduce the angle of’ radiation 8-&:!74'/0 , from

* formula (49) we obtain
CgtdTae isyee
AT por . (50)

The radiation described by formula (48) is regular
transitional radiation formed by periodic inhomogeneities of the
'medium, when the wavelength 1s much less than the inhomogeneity. .-~
period. Since in this case lalwlaﬂ. s according to the statements
made at the end of Sectlon 3,this radiation may be c¢alculated [ 26
in the "single wave"|perturbation theory [3-6] . 1In particular,
the radlation angles (50) coilncides with the angles obtained
in [4]- (see.also [14])

JWith respect fo a wave which is propagated forward, as may
be seen from (33), due to the smallness of 64|, and M-ahuﬁ

-
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-1t is very weak in thls case.

In Case B, since the Fourler amplitudes A2 are arbitrary,
we must calculate the radlatilon by the method given above of the
"two-wave" theory, if the quantity .90, is sufficiently large.
[See Formulas (33) ~ (35)]. |

V. Radiation of a finite periodic medium.

Let us assume a perlodic medium 1s finite and is. located,
for example, between the two planes z = 0 and 'z= Z:gﬁy. where
N is a whole number, and there 1s a vacuum outside of it. The
radlation outside of the perliodic medium may be obtained by using
the condition that the fields are continuous at the boundaries
of the medium and the vacuum, and by using the results given
in the preceding section.

For this purpose, we should note that the transverse
component of the field Ep(tco) outside of the perilodic medium
may be written in the form '

Ei’h V)=

{nr ::‘__ _:3; .zt +G’. “fc".'\'"J}JtF'P’dz

.V"‘\

Ec(!' o) {“ev '—zl—d—“—}— + G, ur(f%*-)} J‘(fep)dx

[ [y
ﬁJ W 4’1"

n.,'.L-.

for the reglons :E<c and’ af?; respectively. Thus Gl and G2

are arbltrary constants, and X} ‘/e- "+ Within the pericdic
medium, the waves obtalned in the preceding sectlon must be : [ 27
‘supplemented by the free fields, which arise due to the presence

of the boundaries, and which are caused by the solution of

the homogeneous Hill equation. Taking equations (16) - (18)

- into account, these filelds may be represented in the form

%;Ed(f,u)s-n {ur[(fué‘ LI 2“"* ..r[‘(-h&ﬂ‘-]} - (52)

+ct,{.., [t s.ﬂ'-ﬁp 1“"“ u,[ :(M;)‘—'i]}}.l;up)dn I
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The arbitrary constants - G, ..... G, are determined from the match-
ing of the correspending fields at the boundaries z = 0 and z = 1:

R L JP R - L
g L LU R
T g e (53)
oo G eherl=8) Gy whegetd) @ = oo DU
‘L"f[‘(’-"-)fﬁ ‘-b“i(‘"”')&, peri3)G, = 1.";[-(—-— J
Here we have introduced the notation
._ r = 6“'1‘8} - Q f - 9“_41{5‘ Y- §
_ | 3 9._‘_ " [] L. _—‘& | (5'4)
’ 95 +3h 8 -Q f_ﬁxr. -5 -0
6ag *» 8y

- With respect to the quantities ql and qss in the right side of

the equations (53), we ~may obtain their explicit form only for the

most interesting case when the radiation wavelength is on the
order of the medium ! inhomogeneity period:

k [ Al M b hda- 0,00 M.y, ‘{-zu.magj |

Q vY ._,gn - 4&(41 8“) T ] l ‘
- " : T S (s8) (55)
:1.-4_[ """%': oM c(-28d- “’9.“.)*”1“(1“-«49,‘) ] ‘
RS K

Solving the system of equations (53) we may obtain the explicit-
form of the constants

I‘lf.—G::{(f" E'r’ ‘:')(5'11 ”s""}nﬂ) ““fr W(& L !
) _(h-l.f, .!.)(1 f"’"‘ltf*)l‘!—"‘f(w”')-r , i{
i

-!O

IR ACRE XN (YR N R PR HC R )t]}' (56)

k
|
.
! G, s {h"'fl:_;' ‘-ztfo"hﬂ)e“f[‘("'k'“&)lj"'
|
|
|

v

.. | *q"" f"l—X‘tsfuf-‘t.f.)“r[( -%+%}C]+
BRSSO RS ot ) v IO T K

24

/28



G {(‘h T-‘ll-)(!’.\. L, "’!')e,.r(. ""t;l)_
"G gy, Xtet&ep222) ox [.(--L)t]}

N
\ (56)
\G { (34~ bt "")ur(‘"['y‘ﬁ ‘ ronse
Rl L), s
where |
s G en g ;:)urw-‘—& 51

O R (),

Analyzing Formulas(56), we find that radiation in a vacuum
represents the superposition of transitional radiation which
arises at the boundaries of the medium and the vacuum and
transitional radiation which arises at the medium periodic¢ inhomo-
geneities over the entire trajectory of motion of a charged R
particle within the medium, as well as Cherenkov radiation (if
it occurs). When the last two types of radiation leave'a.
perliodice medium, they naturally undergo reflection and
refraction, if the average dlelectrlc constant }Q‘ of the
medium 1s not close to unilty.

An analysis of the formulas obtained shows that Just as
was done in [2] the radiation maxima close to the Bragg fre-
quencies, which were found in the preceding sectlon, only oceur
if the medium 1s sufficiently extended when Hm [g, ;,];1 .
In this case, these maxima will alsoc exist in & vacuum, both
beyond the periodic medium and before it.
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